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References [l-g] and others devoted to this problem have either investi- 
gated the problem of the indentation of an elastic body (for instance, a 
stamp) into an elastic foundation In the form of a half-space rith a con- 
stant modulus of elasticity, or one uhlch varies according to the law 
E = EvzY (exact solutions), or they have invest,igated the indentation 
Into an elastic homogeneous layer (approxlwate solutions). 

The present paper evolves a method. which Is not a direct generallaa- 
tion of the methods given in the references, for solving approximately 
the contact problem for the case of a circular area of contact on an 

elastic foundation of any sort, the problems listed above being slmpl~ 

particular cases. 

Tangential interaction over the area of contact is Ignored. 

I.. We shall first consider the axisymetric case of the problem. 

Suppose that an elastic body (for instance, a stamp) with constants 

E, and pa is pressed into an elastic foundation of any sort for which 
the expression [7] & 

w (r) = $ \ G (ht) Jo (rt) dt 
0 

WV 

holds, where Jo(n) is a Bessel function; w(r) is the settlement of a 

point on the surface of the foundation at a distance r = \/(x2 + y2) 

from the point of application of a unit force; 6, and h are certain 

positive parameters which characterize the geometric and elastic pro- 
perties of the foundation. 

We shall assum that the continuous function C(u), the analytic form 
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of which is determined by the type of foundation, possesses the property 

G(m) = 1 (1.2) 

In the case of a homogeneous elastic half-space G(x) 3 1, and in the 

case of a layer resting on an absolutely smooth and rigid foundation we 

have 

G (2) = 2,& 5 (linh2z+ 24-l, em = 2E,-’ (1 - p$) (m = 0, 1) (1.3) 

In the latter case the thi&ness of the layer serves as the parameter 

h. 

‘be form of the function C(x) for a half-space with a modulus of 

elasticity which varies according the the law = E, exp(yt) is given in 

[81, In this case the inverse of y plays the part of the parameter h. 

In order to reduce the present problem to an integral equation for the 

contact stress p(r), we make use of the formula derived in [?I, which 
gives the settlement w(r, p) of points on the surface of the foundation 

under the action of a vertical load concentrated on the circumference of 

a circle of radius p 

Formula (1.4), which corresponds when n = 0 to the case of a half- 

space, is used below to find the elastic displaceumnts in the body which 

compresses the foundation. 

Following Shtaerman (see, for example, El, p.1751, we easily obtain 

the integral equation (compare 171) 

a 

5 (wo (f, p) + WI (r, P)l p (P) dP = 20 - 20 (4 - %(4 (r d 4 (W 

0 

Here e is the radius of the area of contact, tO is the vertical dis- 

placement of the center of gravity of the compressing body, z = z@(r) 

and z=- tl(r) are the equations of the surfaces bounding the compress- 

ing body and the foundation respectively (if the surface of the founda- 

tion is a plane, then za(r) = 0). 

After transfer to the non-di~~ionai quantities 

Equation (1,s) becomes 
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Here 

fc 0% %I = i xmkm (xv %I1 xrn = (&> (jl) (m = 0, 1) 
m=o 

k, (2, &) = r [G (s)lm Jo +s) aTo @‘) ds) 
0 

f (4 = 

z,, - zo (d) - zi (33h) 

fh+ Rl 

(m = o* 1) 

(f.7) 

P.8) 

U.9) 

‘Ihe contact stress will be expressed by the solution of Equation (1.6) 
in the form 

P (r) = mJ (r / h) (00) 

‘Ihe method given below for the solution of Equation (1.6) is based on 
the approximate representation of its kernel. The representation is ob- 
tained as follows. Taking into account that* G(s) -+ 1 as s + 00, the fuuc- 
tion kl(x, (1 can be expressed to a high degree of accuracy in the form 

ki (x, E) = c G (s) Jo @s) Jo (%s) & + i Jo (=;s) Jo (Es) ds (i.ll) 

0 A 

if A is chosen sufficiently large. It is not difficult to obtain from 
(1.11) the expression t9] : 

(a A2) 

‘Ike last term can easily be expanded into a power series if we make 
use of the expansion 6.452(2) given in [lOI. We shall write this ex- 
pansion here as follows 

w 

J,, (=) J, (5s) = (~5)” 1z: 

(- I),” 2 @SW 

,$+n k! (k + n)l Mr’ (‘, %) (1.13) 
lcro 

* For eranple. the function C(r) given by Formula (1.3) monotonically 
approaches uaity from below as x -D -. When t = 3.2 it already differs 

from unity by less than 2 per cent. 
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where 

M~‘(x,~)=x~k(~!)-lF(-~,-~--_;n+1;~2/x2)= 

-_ i (“>(“~“)&._~2W-j)~2j 

j=O ’ 
(1.14) 

We set n = 0 and substitute the result into the integrand in (1.12); 
after carrying out the integration by terms, we obtain an expansion of 
the second term of the right-hand side of (1.12) in a power series. We 
retain N terms of this series and substitute (1.12) into (1.7). As a 
result we obtain the required approximate expression 

iv (- l)kC, M(xO) (2. E) 
Kb, 5)==~o(G El -x1 z1 

hk (kl)2 
- li’* 6% E> 
- 

(1.15) 
k=o 

Here* 

(k = 0, 1, 2. . .) 

0 

For the integral equation (1.6) with the kernel K*(x, 6) we can find 
an exact solution. This solution we shall also denote by the letter qS, 
by virtue of the fact that it is sn approximate solution of the same 
equation with the kernel K(x, c). 

To derive the function 4 is equivalent to finding a function x re- 
lated to the latter by the expression 

x (4 = 3) 04, t-x/a (1.16) 

and satisfying the equation 
1 

a s K* (a t, az) TX (z) dz = f (at) (t < 1) (1.17) 
0 

l For exaaple, in the case of 8 foaadatioa in the form of as elastic 
layer, when (1.3) holds and A = 3.2 (see previous note), the first 
nine values 0r Ck are 

CO 
= 1.153 c3 = 27.32 cs = 10710 

(a) c, = 1.381 % = 181.4 CT = 89400 
Cz = 5.023 cg = 1347 Cs = 769000 

The computations were carried out according to the Qaussian quadrature 
formula. 
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We shall try to find a solution to this equation in the form 

x(t) = (1 - P)-"2 x Y, p,* (t) (1.18) 

Here and in our subsequent work, for the sake of conciseness, we shall 
adopt the notation 

Pm* (t) = P,, (VI - P) (P,,(z) - being a Legendre (1.19) 

polmomial 

2. It will be shown below that the solution of Equation (1.17) can be 
expressed by the function (1.18) for a particular choice of Y,. 'lhe 
proof is based on a remarkable property of Legendre polynomials, namely 
that 

+C&~,.r)r(l -q-l'2 P,*(z)& = h,P,*(t) (2.1) 
0 

This property, in a different presentation for the function k,(x, <), 
was noted and verified for small values of I in [ill. However, the 
reference does not contain a conclusive proof (for any given value of I), 
and for this reason a general formula for calculating the value of A, 
does not exist. Here we shall obviate this problem. 

By setting t = \/(l- y*), and making use of (1.8) and (1.19), we can 
transform Expression (2.1) to the form 

co 

\ Jo (as VI - y”) ds 1 Jo (am) P* (r) v& = La p2Tn (!I) 
0 0 

If in the inner integral we make the substitution r = \/( 1 - q*), we 
obtain 

03 

\ J,(asJo=g)ds f 5 Jo(a~V3=jp*?n(11)~?l= LP27n(Y) (2.2) 

0 -1 

Making use of Formula 6.541(3) in [lo], we discover that 

Jo(z J/G*) = f!! ; ‘* ‘;, *)!! Jak (2) PM tz) 
k=o 

(a,=2k+ +) (2.3) 

After evaluating the inner integral in (2.2), making use of expansion 
(2.3) and the orthogonality of the Legendre polynomials, and having then 
made the substitution as = x, we find after repeated use of expansion 
(2.3), that Expression (2.2) becomes 



Making use of Formula 4.415(Z) of [lo], and taking into account the 
analytic properties of the ~-fiction, we obtain 

(k=m) 

Finally, by substituting (2.5) into the 

(~pZn$+; n=m, k) (2.5) 

left-hand side of (2.4), we 
can establish the validity of Expression (2.1) and also of the following 
formula: 

h, = 0.5n4-"(m!)-2[(2m - 1)!!]2 (m =o, 1, . * .) (2.6) 

3. We shall prove now that the function (1.18) is a solution of ba- 
tion (1.17), and we shall indicate a method of dete~ning the coeffi- 
cients Ya. 

In order to do so we substitute (I.18) into (1.17), taking into 
account (1.81, and then make use of Expression (2.1). 'Iben, bearing in 
mind the orthogonality of the Legendre polynomials, we integrate both 
sides of Equation (1.17) with respect to t over the range (0.1) with a 

weight function (1 - 9) -"*PI+(t); as a result (1.17) becomes 

N-Z N 

hl(41$- i)-‘q--uax1 z: Y, 2: 
(- llkCk a2k Bnf) 

(3.1) 

= m=o max (in, 1) 4k (k!)’ 
fl 

(I = ($1, * . . , N) 

where 
Y[ = (4Z$ 1)&-l fl (I> W (3.2) 

0 (k>4 
b(k) = 1 p; 61 

7% o ~~yan+ldz = s (-1)‘(2k)! (n-k)! (tz) (3.3) 

2k-n [Z (n + kf + I]!! (n>k) 

The solution of the system (3.1) can easily be found in general form 
by virtue of the fact that its coefficients form an almost triangular 
matrix. Also, the structure of the quantities to be found from this 
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system will be of the form 

Yo = Fo 9-l (~1, YI=Y,XI+FZ (I = 1, 2, . . . , N) (3.4) 

For example, $((a), F, and X1 for N= 1 are respectively 

~(c()=+ux&-~u2 + gy,24 

Fo=fo+ & w21~3, x,=+3, F,=$f, 

(3.5) 

For purposes of brevity the solution of (3.1) for cases when N> 1 is 
not given. 

Having found the coefficients Ys (n = 0, 1, . ..) and substituted them 
in (1.18), we obtain from (1.10) and (1.16) a formula for the contact 
stress 

(3.6) 

We have thus found a solution for the general case in the form of an 
infinite series. However; if the function (1.9) is a polynomial, then 
the key series ia lost. As an example, let us find the solution x,(t) of 
Equation (1.17) for f(x) a 1. In this case f0 = F 
1, 2, . ..) and consequently, taking into account t 

='l, fl = F, = 0, 2 = 
1.181, (3.21, (3.41, 

we obtain 

xa(t) = g-1(,)(1 -q-r/a 5 x,p,* (t), x0=1 (3.7) 
m=o 

We shall now derive a formula for evaluating the force P pressing 
the elastic body onto the foundation. We first substitute (3.6) into the 
integrand in the formula 

After carrying out the integration, taking into account (1.18) and 
the orthogonality of the Legendre polynomials, we obtain 

P=2Jtjrp(r)dr 
0 

(3.8) 

P = 2naY, (3.9) 

We can determine z,, from Equation (3.9) if we know the dimensions of 
the area of contact. l'his will not be possible in the case of only 
partial contact [1,2I. In this case the contact stress must be finite at 
r = a, which from (3.7) and (1.18) will be so if 
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y?n pm (0) = 0 (3.10) 

Equations (3.9) and (3.1OZnable us to find z0 and a. 

4. ‘lhe solution derived above is an infinite series; it would be 

interesting to try to find a solution of the integral equation (1.6) with 

the kernel (1.15) in closed form. 

With this aim in mind we make use of the well-known result [121: that 

in order to obtain a solution of an integral equation with an arbitrary 

right-hand side we can find a solution q=,(x) of this equation, but with 

a right-hand side f(x) = 1, and then make use of the formulas 

cp (r) = r (a) qa (3) - r qu (2) r’ (u) du (4.1) 
x 

Here and in our following work a stroke will be used to denote a de- 

rivative. 

It is not difficult to show that in the present case 

qa (4 = cc1 Xa (2 I4 (4.3 

and consequently, Formulas (l.lO), (4.1), (4.4) and (3.17) together give 

a solution to the problem in closed form. If we now start from the solu- 

tion in closed form, Formula (3.8) becomes 

where 

(e, + e,) P = 2nhM (a) [z, - J (41 (4.4) 

If we substitute (4.3) in the second formula of (4.2)) taking into 

account (1.18), we find that 

M(u) = a*-’ (a) (4.6) 

Instead of (3.10), the condition of finiteness of the contact stress 

now becomes y(a) = 0, which, by substituting (4.3) in the first formula 
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of (4.2) and taking into account (1.18) and (1.9), we can reduce to the 

form 

1 d 
“(4 J(a) (4.7) Zo=M’(a)‘M 

dimensions of the area of con- 

the formulas obtained so far 

We obtain the equation for finding the 
tact by substituting (4.7) into (4.4). 

We shall illustrate the application of 
by two particular cases. 

Suppose that an elastic foundation is indented by a stamp rith a flat 
base. Then 8, = 0, z,,(r) = 21(r) P 0, and substitution of f(r) = ~,,6~-~ 
into the first formula of (4.3) gives y(a) = ~~61~‘. Consequently, taking 
into account (4.1) and (1. lo), re obtain 

p(r) = zoe;‘Q-1 x,(r / a) 

If we confine ourselves to the first approximation (3.5). then 

2~91 (r) = P (aa - r2)-“* [If n-lClah-J($ a2 - 2r2)1 

The settlement of the stamp is given by the formula 

~J-CUZ~ = P0& (a), a=a / h 

which re obtain from (4.4). taking into account that J(a) = 0. 

(4.3) 

(4.3) 

(4.10) 

As a second example, confining ourselves again to a first approrima- 
tion, let us consider the indentation of an elastic body in the case 
uhen (compare [ll) 

zo (r) + z1 (r) = era (4.11) 

In this case we obtain the following formula for the contact stress 

np (r) = 1.5 PCs 1/a” - ra (4.12) 

by making use of Expressions (3.6). (3.10) and (3.0) and bearing in mind 
that N = 1. 

From an equation obtained by substituting (4.7) into (4.4) and taking 
into account (4.11). (4.5) and (3.5) we find that 

a3 = i.5nP (80 + 81) (8nC + PWJ+)-’ 

Similarly, from Equation (4.4) ue obtain 

(4.13) 



216 G. IO. Pop00 

(4.14) 

Here $(a) can be determined from the first of formulas (3.5). 

In order to establish the number N of terms in the series (1.13) that 

should be retained (i.e. the degree of approximation required) in order 
to obtain a sufficiently accurate solution in any given case, we must de- 
termine the values of the function x=(t), in terms of which, as is clear 
from our preceding work, the general solution to the problem is expressed. 

TABLE 1. 

N !=O 

1 1.02 
2 1.01 
3 1.01 

1 1.39 
2 1.36 
3 1.37 

1 1.86 
2 1.77 
3 1.81 

- 

I - 
x, (1) 

0.2 
I I 

0.4 0.6 

1.02 
1.01 
1.01 

1.38 
1.34 
1.35 

1.82 
1.74 
1.78 

1.00 0.984 
1.00 0.983 

1.00 0.983 

1.33 1.24 
1.30 1.24 
1.31 1.25 

0.954 
0.959 
0.959 

I.13 
1 .I8 
1.17 

1.69 1.49 1.20 
1.65 1.56 1.48 
1.71 1.58 1.37 

1 - 0.8 

0.917 
0.931 
0.929 

0.978 
1.11 
1.07 

0.831 
1.51 
1.12 

1.05 
1.04 
1.04 

0.895 
0.846 
0.857 

0.851 
0.654 
0.730 

1.04 

-_ 

0.715 

Some results applicable to the case (1.3). and approximations (N = 1, 
2, 3) with the values (a) given in the footnote on page 210 and nitb 
8, = 0, are listed in Table 1, which gives the values not of the actual 
function x, (t). which becomes infinite when t = 1, but the values of 
the function x, (t) = \/ ( 1 - t’) x,(t). 

This table also gives values of the function $(a). for the same case 
and for the three approximations, which according to (4.10) determines 
the settlement of the stamp to an accuracy of a multiplier. For com- 

parison, the table also gives values of this function derived from 

numerical results cited in 141. 

On the basis of the results listed in Table 1, we conclude that in 
the case of a foundation in the form of an elastic layer, and with 
(I < 0.5, the solution of the contact problem need not be taken beyond a 

first approximation. 
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5. Let us now consider the case when there is no axial symmetry, when 

(1.2) is replaced by a more general relation 

G (CC) = xv 11 + o (I)] as x--r= 
( -1< v<$ (5.1) 

Suppose that an elastic foundation of the type Cl.11 is compressed by 

a stamp, the surface of the base of which is given by the equation z = 

g(r, #). We shall assume that the function g can be expressed in the form 

g (r, cp) = go (I”) + E lg, (r) cos ncp + gn- (r) sin ucpl (5.2) 
?I=1 

‘lhe contact stress p(r, #P) in this case can then be determined simply 

by finding the stress for the case* 

g (r, ‘p) = &I (r) cos ncp (5.3) 

The contact stress will be of an analogous form 

P (7.t cp) = Pn (4 cos ncp (5.4) 

In order to find the integral equation for the sought function P,,, we 
require a formula which will enable us to find the settlement wa(t, p) 

of points on the surface of the foundation under a load concentrated 

along the circumference of a circle of radius p and distributed according 

to a cosine law. Following the method given in [71, we can show that 

zufnf (r, p) = &p s G (th) J, (rt) J,, (pt) dt cos na, 

0 
(5.5) 

Taking into account (5.3) to (5.5) we find that 

a 

s Kn (2, E) EP~*(E) dg = gn* (E) (5 < a) (5.6) 
0 

* For the case when g( r, 4) = g, - (r) sin nq5 the ssme procedare is 

adopted, the resulting formula8 differing only in a multiplier (co8 

ac$ becoaes sin n#). In passing. we note that the idea used hare of 

reducing a three-dimensional contact problem to one possessing c~clfc 

synaetrJ is taken from the thesis by V.I. Yossakovskii (Moscow, 

Institute of Mechanics, Soviet Academy of Sciences, 1953). 
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C. la. Popov 

pn*(‘B = hpn W), gn*tE) = %--lbnrz f&l (5.7) 

Kn (5, E) = 7 G (4 Jn (4 J (E4 ds (5.8) 

We give belaw an approximateOD*?thod of solving Equation (5.6) based 
on the following a~ro~~ti~ of its kernel 

where 

K, (x, 6) = k(“) (5, E) - (q”Hn (2, tJ = K* (2, E) (5.9) 

k(-) (5, E) = y s*J,, (m) Jn (Es) ds 
0 

(5.10) 

A 

C$& [sv-G(s)]s2mds, s c(O)= c m m (m=o, 1,2 ,... 1 (5.12) 
0 

Approximation (5.9) is derived fran the same considerations as (1.15). 
The numbers N and A have their formar meaning, and the function M’,“)(x,[) 
is determined from Fromula (1.14). 

fn order to find a solution to Equation (5.6) with the kernel K;(x,[), 
we first solve the integral equation (2.5) with kernel (5.10). To do so, 
bearing in mind the result used above, taken from [121, it is sufficient 
to solve the equation 

(5.P3) 

and then apply Formulas (4.1) and (4.2). 

Tbe solution of EIquation (5.13) can be found in the following way. We 
write the kernel of Equation (5.13), given by Formula (S-lo), as follows 

kc”) (5, E) = Eyl-vkv (z / f), kv (y) = i Jn (4 J, (sy) sVds (5.14) 
0 

We then make the substitutions 

z F ae-“, g = 0x-5, ul-ve-fqa (ae-') = Xc(t) 

and multiply both sides of Fquation (5.13) by CZ”~-~~. We can then 
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transform the latter to the following Wiener-~opf integral 
the first kind: 

219 

equation of 

s 1 (t - z) x1; (z) d7 = eiw, ImC>O (1 (y) = e-YYky (e-“)) (5.15) 

Aftei constructing the function xc(t) by a method described in detail 
in [?I and illustrated by an example of an equation analogous to (5.151, 
we find that 

qn(a$:) 21-T@+ +> r-1 (Pf$)P'(&C+P(c?- 3+-l + 

+n i ~-l-n~~B-qP-(dtl] (p=qy (5.16) 
x 

After substituting (5.16) in For&as (4.1) and (4.2) and carrying out 
the necessary computations, we obtain a solution to Equation (1.6) with 
kernel (5.10) in the following form 

p-Y,p 

v @) = ra (pl 
@@I a W(u) du 

(a8_-za)+-EL - x @ai 22)‘-” s 1 ( IL= q+) (5.17) 

Here, 

t.D (cc) = a-,“-’ & aNap \ 
’ s*‘f (sa) ds 

0 ti 
_ spjl_F (5.18) 

Formulas (5.17) and (5.18) can be written in the symbolic form 

T==L# (5.1'3) 

Here L is an operator which transforms the function f into a solution 
of the integral equation. 

6. In order to solve the fundamental equations (5.61, we make use of 
Carleman's m&hod, which in this particular case can be described as 
follows. Substitute in (5.61, not the kernel, but its expression (5.9) 
in the form of the sum of two functions, and then take the second of them 
over to the right-hand side. As a result we obtain an equation which has 
a solution in the form of Formula (5.191, but with a right-hand side 
given by 

f(3 = gGH- s (~~~n~~(~,~~~~(~) dS (6.1) 
0 

If we now expand (5.11) into a hiaclaurin series in c, we find that 
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Here 

(64 

We introduce the further notation 

YE) = 5 1;2m+n+1p; (E) dt 

0 

(m = 0, 1,...,N) (8.3) 

Taking into account (6.2) and (6.3), we cau replace (6.1) by 

f(z) = zn i hl,n) (z) Y$’ + & (2) (6.4) 
m=o 

If we now apply the operator L to the function (6.4), we obtain* 

Pn’ 1x) = Lf (6.5) 

lhe numbers Yr), which according to (6.4) occur on the right-hand 
side of (6.5), can be found, for example, in the following way. Multiply 
both sides of Expression (6.5) by x2 ‘+ “+ ‘, and, taking into account 
(6.3) and Formulas (5.17), (5.18) which determine the operator L, inte- 
grate with respect to x over the interval (0, a). As a result we obtain 
the following set of equations for determining Yin): 

yp = 2-” (n + 01 
[ 

Q2(lfn+p) 

ra (PL) Wn+l 4n (1 + n + p) 
5 AzY:‘+ gr’“‘] 

m=. 

(1 = 0, i,..., N) (6.6) 
Here 

(6.7) 

l If we take into account definition (6.3). it is not difficult to show 

that Expression (6.5) is a Fredholm equation of the second kind with 
a degenerate kernel. When the values of Yin) have been found by some 
method or other, the above relation constitutes a formula for finding 

the functions p,*(n = 0, 1, 2, . . . ), in terms of which the required 

contact stress can be expressed. 
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gy = 2 j aJ,n’ (u) zN+n)f” du, (z)n=z(Z+l)(Z+2),...,(z+n--L) 
0 

wo = 1 

Here @,* denotes a function obtained from Formula (5.18) by replacing 

f by gn+. 

Let us consider the more detailed case when an elastic foundation is 
indented by a stamp with a flat base under the action of an eccentrically 

applied force P (the eccentricity being denoted by e). 

In this case Expansion (5.2) consists of two terms, where g,,(r) = z0 

g,(r) =Br, and z,, has its former meaning, and B is the angle of inclina- 

tion of the stamp after deformation (compare [13,6I). 'Ihe contact stress 

now has the form 

P (r, ‘d = PO tr) + PI tr) COS Cp 

In the present case, according to (5.7) 

gn* (Z) = 7dn (n = O,i), 70 = zo~r-‘, 71 = Pm-1 

Taking this into account, and introducing the new unknowns 

xl"'= 4--"(l$&;'Y1"' (n = 0, 1) 

(6.4) is replaced by 

f(5) =7#[1 +4qkL);;' 5 h?(s)XZ' ] 

m=O 

Substituting this expression in (5.18), we obtain 

@ (4 = m (p)nlhn(a), &&(a) = If 5 Xg’Eg’ (n=O, 1) 

Here 

We introduce the polynomial 

(‘3.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 
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We can then write 
. 

5 
@-I & 

pL2)l-P - 
a*(j-l) (&* _ x*)p pjel tx / a) (p = !+L) (6.15) 

Applying the operator L to the function (6.11) and taking into account 

Formula (5.17), we find that 

lhe set of equations 

‘#n, = r2+” (I + @I 
I-’ (P (P),+l+l 

x$&y &*u+n+P) (1 1 = 0, I,..., N) (6.17) 
m=o 

for determining the numbers Xi”) can be obtained from (6.6) on the basis 

of (6.10) and (6.9). 

If we are given the eccentricity e and the magnitude of the force P, 
then z0 and /3 can be found from the conditions of equilibrium of the 

stamp (compare [131) 

0 2x (I 
(6.18) 

Pen = 
1s 

y (r, cp) cos” qrn+l dqdr = 2r-‘~zhl+* 
5 

pm* (5) CZ~+~ dx (R =o, 1) 

0 0 0 

In order to check the validity of the second equality we make use of 

(6.8) and (5.7). Fran Relations (6.18), and taking into account (6.3), 

(6.10) and (6.9), we find that 

ml I 
zv=ZrrhX,o’ P= JW*p 

43&x(” 
(e = -$) (6.19) 

0 

It is of interest to derive a formula for the maximum eccentricity 

e ..= possible without separation of the stamp from the foundation. In 
this case, following Abramov [131, we obtain 

e max = hwlemax = 2Ao(a) Xt’ [A1 (a) Xr’]-l (6.20) 

It will be noted from the above calculations that it is simpler to 

solve the set of equations (6.17) by the method of successive approxima- 

tions. Convergence is particularly rapid for n = 1 (three or four 
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approximations are sufficient to obtain an answer to the accuracy of 

four places). If n = 0 the convergence is less rapid. 

However, there is no need to solve (6.17) when n = 0 and v = 0, since 

the numbers X2) are related in a sufficiently straightforward manner 

with the solution of a simpler set of equations, namely (3.1) with fl=l, 

1 = 0, f I = 0, 1 > 0, i.e. with the numbers X, occurring in Expression 

(3.7) for the function x,(t), which is relateh to 

sion 

pb (5) = r0a-% (z / 4 

After substituting (6.21) into (6.3) and taking 

(3.3) and (6. lo), we obtain 

Ihe values of blk’ are given by Formula (3.3). 

TABLE 2. 

p,*(x) by the expres- 

(6.21) 

into account (3.7), 

(6.22) 

a 

N 1 

10. x”o’ I 0.137 

amax 0.161 

Table 2 shows sqme results obtained by using the above ioruulas. It ..‘ 
gives values ior three approxluations N = 1, 2, 3, of the quantity Xt”, 
the inverse of rhich, according to (6.19). deterulnes the aagle of lncli- 
nation of the stamp to the accuracy of a multiplier. This table also 
gives values of cm_ calculated from Formula (6.20). The calculations 
uere carried out for a foundation in the rorm of an elastic layer (V = 0) 
using the values of C, given by (a) in the footnote on page 210. It will 
be seen rrou Table 2 that in this case, as rell aa in the axlsvuuetric 
problee,nf a GO. 5 re need not go beyond a first approriuation. 

In conclusion, we should point out that the method described above 
can be applied to the contact problem for a thin circular plate on a 
foundation of any sort. 
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