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References [1-8] and others devoted to this probler have either investi-
gated the problem of the indentation of an elastic body (for instance, a
stamp) into an elastic foundation in the form of a half-space with a con-
stant modulus of elasticity, or one which varies according to the law
E= E;zv (exact solutions), or they have investigated the indentation
into an elastic homogeneous layer (approximate solutions).

The present paper evolves a method, which is not & direct generaliza-
tion of the methods given in the references, for solving approximately
the contact problem for the case of a8 circular area of contact on an
elastic foundation of any sort, the problems listed above being simply
particular cases.

Tangential interaction over the area of contact is ignored.
1. We shall first consider the axisymmetric case of the problem.

Suppose that an elastic body (for instance, a stamp) with constants
E, and p, is pressed into an elastic foundation of any sort for which
the expression [7] %

w(r) = 29718 (ht) Ty (rt) dt (1.1)

0

holds, where Jy(x) is a Bessel function; w(r) is the settlement of a
point on the surface of the foundation at a distance r = /(22 + y?)
from the point of application of a unit force; 6, and h are certain
positive parameters which characterize the geometric and elastic pro-
perties of the foundation.

We shall assume that the continuous function G(v), the analytic form
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of which is determined by the type of foundation, possesses the property
G(o0) =1 1.2

In the case of a homogeneous elastic half-space G(x) = 1, and in the
case of a layer resting on an absolutely smooth and rigid foundation we
have

G () = 24 « (ninh 22+ 22)71, 0 = 2E, " (1 — py?) m=0,1) (1.3)

In the latter case the thickness of the layer serves as the parameter
h.

The form of the function G(x) for a half-space with a modulus of
elasticity which varies according the the law = E, exp(yz) is given in
[8]. In this case the inverse of y plays the part of the parameter h.

In order to reduce the present problem to an integral equation for the
contact stress p(r), we make use of the formula derived in [7], which
gives the settlement w(r, p) of points on the surface of the foundation
under the action of a vertical load concentrated on the circumference of

a circle of radius p
o0

n(r,0) =0 | G RO Lo (Do (ot} m=01)  (1.4)

0

Formula (1.4), which corresponds when m = { to the case of a half-
space, is used below to find the elastic displacements in the body which
compresses the foundation.

Following Shtaerman (see, for example, [1, p.175], we easily obtain
the integral equation (compare [7])

§lwo(ra p) + wy (7, p)Iplp)dp = 20— Zo (ry—z.(r) r<a)

0

)

Here a is the radius of the area of contact, z, is the vertical dis-
placement of the center of gravity of the compressing body, z = z,(r)
and z = ~ z,(r) are the equations of the surfaces bounding the compress-
ing body and the foundation respectively (if the surface of the founda-
tion is a plane, then z,(r) = 0).

After transfer to the non-dimensional quantities
@=r/h, E=p/h, oa=alh

Equation (1.5) becomes
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(K@ bbe@d=/@ e<o (1.6)
0
Here
K@t = tbn(@ 8, m= i =01 (L)
kn (2, 8) = | (GO otas) Lo (E9)ds) =0, ) (1.8)
0

f (x) — 2p — Zoﬁ(:{lz ;—1 zy (xh) (1.9)

The contact stress will be expressed by the solution of Equation (1.6)
in the form

p(r)=h"1g(r/h) (1.10)

The method given below for the solution of Equation (1.6) is based on
the approximate representation of its kernel. The representation is ob-
tained as follows. Taking into account that* G(s) + 1 as s » =, the func-
tion k,(x, £) can be expressed to a high degree of accuracy in the form

A -]

by (@, B) &\ G 6) T (@) To (&) ds + § Jo (@) To (5s) ds (1.11)
0 A

if A is chosen sufficiently large. It is not difficult to obtain from
(1.11) the expression [9]:

A
@, B~ ko2, B — | 11— G(6)1 o (29) Jo @) ds (1.12)

0

The last term can easily be expanded into a power series if we make
use of the expansion 6.452(2) given in [10]. We shall write this ex-
pansion here as follows

o0 (— 1): 2 (k+n)

Ta (@) Ta (&) = @A) 21 o oy M¥” (@) (1.13)
2=0)

* Por example, the function G(x) given by Porsula (1.3) monotonically

approaches unity from below as x » o, When t = 3.2 it already differs
from unity by less than 2 per cent.
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where

M (2, B) = a* ()2 F (—k, —n—k;n+1; /2% =
k .
= ( l; )(k T n) G -l’~!n)! A (114)
i=0

We set n = 0 and substitute the result into the integrand in (1.12);
after carrying out the integration by terms, we obtain an expansion of
the second term of the right-hand side of (1.12) in a power series. We
retain N terms of this series and substitute (1.12) into (1.7). As a
result we obtain the required approximate expression

(—0*C, MY (z, B)
4% (k1)

N
K(z, B) = ko (x, B) — %, ) =K*(z, 8 (1.15)
L)
Here*
4
ckw..-.& 1—G(s))s*ds  (k=0,1,2...)

(1]

For the integral equation (1.6) with the kernel K*(x, £) we can find
an exact solution. This solution we shall also denote by the letter ¢,
by virtue of the fact that it is an approximate solution of the same
equation with the kernel K(x, £).

To derive the function ¢ is equivalent to finding a function x re-
lated to the latter by the expression

(@) =agat), t=2z/a (1.16)

and satisfying the equation
1
aSK* (a2, at) Ty (1) dT = [ (ait) <) (1.17)

0

* For example, in the case of a foundation in the form of an elastic
layer, when (1.3) holds and A = 3.2 (see previous note), the first
nine values of C, are

Cp = 1.153 C; = 21.32 Cs = 10710
(8) €, =1.381 C, = 181.4 C; = 89400
C, = 5.023 Cg = 1347 Cg = 769000

The computations were carried out according to the Gaussian quadrature
formula.
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We shall try to find a solution to this equation in the form

1O = =712 2 Y Pr*(2) (1.18)
m=0
Here and in our subsequent work, for the sake of conciseness, we shall
adopt the notation

P *(t) = Py (V1 — 1?) (P, (z) — being a Legendre (1.19)
polynomial

2. It will be shown below that the solution of Equation (1.17) can be
expressed by the function (1.18) for a particular choice of Y . The
proof is based on a remarkable property of Legendre polynomials, namely
that

agko (at, at) T(1 — 12)~2/2 P, * (1) dv = A Pp* (1) (2.1)

This property, in a different presentation for the function ky(x, ¢),
was noted and verified for small values of ®m in [11]. However, the
reference does not contain a conclusive proof (for any given value of m),
and for this reason a general formula for calculating the value of A
does not exist. Here we shall obviate this problem.

By setting t = /(1 - y?), and making use of (1.8) and (1.19), we can
transform Expression (2.1) to the form

\ ol VT=y2)ds | Jo (am) P* () g = A Pam (1)

[

If in the inner integral we make the substitution r = y (1 - 32), we
obtain

VIolas VI—=1ds 1 Tolas VT—1) Pam(mdn = A Pan(y)  (2.2)

—1

Making use of Formula 6.541(3) in [10], we discover that

Joe VI—z) = -I/Zn 2 SO (@) Py () (se=26+3) (23)

Tk

After evaluating the inner integral in (2.2), making use of expansion
(2.3) and the orthogonality of the Legendre polynomials, and having then
made the substitution as = x, we find after repeated use of expansion
(2.3), that Expression (2.2) becomes
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oo

2m — Y Gy o) 2k — DI
mlm U o o @k DU Pos ()| o () T (@)% = Pan(y)  (2.4)
0

2Meml & R
Making use of Formula 4.415(2) of [10], and taking into account the
analytic properties of the gamma-function, we obtain

& d 0 (ks=m) .

SJ%(x)J“k(x)%:’ Umitt (=my Ga=2tgin=mk) (25

4]

Finally, by substituting (2.5) into the left-hand side of (2.4), we
can establish the validity of Expression (2.1) and also of the following
formula:

Ay = 0.504—m (m)-2 [@m — D2 (m=0,1,...) (2.6)

3. We shall prove now that the function (1.18) is a solution of Equa-
tion (1.17), and we shall indicate a method of determining the coeffi-
cients Y .

In order to do so we substitute (1.18) into (1.17), taking into
account (1.8), and then make use of Expression (2.1). Then, bearing in
mind the orthogonality of the Legendre polynomials, we integrate both
sides of Equation (1.17) with respect to t over the range (0.1) with a
weight function (1 — tz)"lfthl*(t); as a result (1.17) becomes

N—1 N ke g2k (3.1)
—0)*C, a
MEFOY —ax, DY D) (——,,)—l‘—— Bni’ = f;
ma==0 max (m, I) 4 (k!)!
(1=01,...,N)
=@+ 0N > N) (3.2)
where
f 1& f (at) P; (t) tdt B ) kil (k>2 b (l)b(m)
=\ —————— , ke = ;) Or—i0;
) Vi —a = ! ™
L g 0 (:>n)
o =Sv——1k_1a‘2"+‘d‘= (—0F @R (n— k) (n\? (3:3)
0 25" 12 (n + k) + 4]0 <k> (n>)

The solution of the system (3.1) can easily be found in general form
by virtue of the fact that its coefficients form an almost triangular
matrix. Also, the structure of the quantities to be found from this
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system will be of the form
Y0=F01.p—1(a), Y1=Y0X1+F[ =1, 2,...,N) (34)

For example, y{a), F; and X; for N = 1 are respectively

Y(a) =5 —ax (Co a? 4,(1 G, 5) (3-9)
4 4u,C 0
F, =‘fo+ﬁ“1clf1°‘3, X, = 1;1“1 s, F1=4T/‘1

For purposes of brevity the solution of (3.1) for cases when N> 1 is
not given.

Having found the coefficients ¥, (m = 0, 1, ...) and substituted them
in (1.18), we obtain from (1.10) and (1.16) a formula for the contact
stress

p(ry=ay(r/a) (3.6)

We have thus found a solution for the general case in the form of an
infinite series. However, if the function (1.9) is a polynomial, then
the key series is lost. As an example, let us find the solution y, (t) of
Equation (1.17) for f(x) = 1. In this case fy=F, =1, f;=F; =0, l=

1, 2, ..., and consequently, taking into account 81.18), (3.2), (3.4),
we obtain
N
Ka () =92 (@) (1 —)1/2 D) X Pr* (1), Xo=1 (3.7)
m=0

We shall now derive a formula for evaluating the force P pressing
the elastic body onto the foundation. We first substitute (3.6) into the
integrand in the formula

P= an rp(r)dr (3.8)

After carrying out the integration, taking into account (1.18) and
the orthogonality of the Legendre polynomials, we obtain

We can determine z, from Equation (3.9) if we know the dimensions of
the area of contact. This will not be possible in the case of only
partial contact [1,2]. In this case the contact stress must be finite at

r = a, which from (3.7) and (1.18) will be so if
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(o]
2 Y P (0)=0 (3.10)
m=0

Equations (3.9) and (3.10) enable us to find z, and a.

4. The solution derived above is an infinite series; it would be
interesting to try to find a solution of the integral equation (1.6) with
the kernel (1.15) in closed form.

With this aim in mind we make use of the well-known result [12]: that
in order to obtain a solution of an integral equation with an arbitrary
right-hand side we can find a solution g,(x) of this equation, but with
a right-hand side f(x) = 1, and then make use of the formulas

-4

9@ =7(®) 0 (@) — | u (@) (u) du (4.1)
where u a
1@ = g Vgl M@= @ds (4.2)

Here and in our following work a stroke will be used to denote a de-
rivative,

It is not difficult to show that in the present case
ga (2) = a7 Yo (2] @) (4.3)

and consequently, Formulas (1.10), (4.1), (4.4) and (3.17) together give
a solution to the problem in closed form. If we now start from the solu-
tion in closed form, Formula (3.8) becomes

(B0 + 8,) P = 2nhM () [20 — J (a)] (4.4)
where

1

N
J{a) = S(i — )12z, (at) + 25 (at)] D) Xw Pt (a= ) (4:5)

0 m=0

If we substitute (4.3) in the second formula of (4.2), taking into
account (1.18), we find that

M (o) = o™ (o) (4.6)

Instead of (3.10), the condition of finiteness of the contact stress
now becomes y(a) = 0, which, by substituting (4.3) in the first formula
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of (4.2) and taking into account (1.18) and (1.9), we can reduce to the
form

z M () J (o) (4.7)

1 d
0™ M (a) da
We obtain the equation for finding the dimensions of the area of con-

tact by substituting (4.7) into (4.4).

We shall illustrate the application of the foramulas obtained so far
by two particular cases.

Suppose that an elastic foundatiom is indented by a stamp with a flat
base. Then 00 =0, zp(r) = z;(r) = 0, and substitution of f(x) = zool—l
into the first formula of (4.2) gives y(a) = zool‘l. Consequently, taking
into account (4.1) and (1.10), we obtain

pir)= zc,el_la‘1 AT/ 0) (4.8)
If we confine ourselves to the first approximation (3.5), then
2np (r) =P (e —r2) s [1+ n‘lClah""(-% a®— 2r2>] (4.9)
The settlement of the stamp is given by the formulas
2nazo = POy (a), a=a/h (4.10)
which we obtain from (4.4), taking into account that J(a) = 0.

As a second example, confining ourselves again to a first approxima-
tion, let us consider the indentation of an elastic body in the case
when (compare [1])

() +z(r)=Cr? (4.11)
In this case we obtain the following formula for the contact stress

ap(r)=15Pa3yYa*—r? (4.12)

by making use of Expressions (3.6), (3.10) and (3.9) and bearing in mind
that N= 1,

From an equation obtained by substituting (4.7) into (4.4) and taking
into account (4.11), (4.5) and (3.5) we find that

a® = 1.51P (o + 01) (8C + PO,C1h~%)71 (4.13)

Similarly, from Equation (4.4) we obtain
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: 4
Zo = @na) P (00 -+ 0 $ (@) + 3 Ca*(1 — o xCied) (4.14)
Here Y(a) can be determined from the first of formulas (3.5).

In order to establish the number N of terms in the series (1.13) that
should be retained (i.e. the degree of approximation required) in order
to obtain a sufficiently accurate solution in any given case, we must de-
termine the values of the function X, (t), in terms of which, as is clear
from our preceding work, the general solution to the problem is expressed.

TABLE 1.
X () ¥ (@)
" above o

N |t=0] 02 | 04 0.6 0.8 1 theory ref. [4]

1 1.02 | 1.02 [ 1.00 | 0.984 0.954 0.917 1.05

2 1.01 |1 1.01 | 1.00 | 0.983 0.959 0.931 1.04 1.04 0.5
3 1,00 11.01 | 1.00 | 0.983 0.939 0.929 1.04

1 1.39 1 1.3811.33 1.24 1.13 0.978 0.895

2 1.36 { 1.34}1.30 1.24 1.18 1.1 0.846 — 0.75
3 1.37 [ 1.35 | 1.3t 1.25 1.17 1.07 0.857

1 1.86 | 1.82 | 1.69 1.49 1.20 0.831 0.851

2 1.77 {1 1.74 | 1.65 1.56 1.48 1.51 0.654 0.715 1.0
3 1.81 1 1.78 | 1.71 1.58 1.37 1.12 0.730

Some results applicable to the case (1.3), and approximations (N = 1,
2, 3) with the values (a) given in the footnote on page 210 and with
00 = 0, are listed in Table 1, which gives the values not of the actual
function X, (t), which becomes infinite when ¢ = 1, but the values of
the function X, (t) =V (1 - tz)xa(t).

This table also gives values of the function i(a), for the same case
and for the three approximations, which according to (4.10) determines
the settlement of the stamp to an accuracy of a multiplier. For com-
parison, the table also gives values of this function derived from
numerical results cited in [4].

on the basis of the results listed in Table 1, we conclude that in
the case of a foundation in the form of an elastic layer, and with
a < 0.5, the solution of the contact problem need not be taken beyond a
first approximation.
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5. Let us now consider the case when there is no axial symmetry, when
(1.2) is replaced by a more general relation

G@) =211+ 0(1)] 88 x—’°°(“1<"<_;) (5-1)

Suppose that an elastic foundation of the type (1.1) is compressed by
a stamp, the surface of the base of which is given by the equation z =
g(r, ¢). We shall assume that the function g can be expressed in the form

g ®) = 8 (r) + 3} [ () cos n@ -+ gu= () sin ng] (5.2)
n=1

The contact stress p(r, ¢) in this case can then be determined simply
by finding the stress for the case®

g(r, @) = gn(r)cosng (5.3)
The contact stress will be of an analogous form
p(r, @) = pn(r)cosng (5.4)
In order to find the integral equation for the sought function P, we
require a formula which will enable us to find the settlement »™(r, p)
of points on the surface of the foundation under a load concentrated

along the circumference of a circle of radius p and distributed according
to a cosine law. Following the method given in [7], we can show that

w (r, p) = Byp S G (th) Jo (rt) Jo (pt) dt cos ng (5.5)

Taking into account (5.3) to (5.5) we find that

a

L]

Ky (z, E) Epn*(B) dE = ga* (E) E<w (5.6)

o

* For the case when g(r, ¢) = g, — (r) sin n¢ the same procedure is
adopted, the resulting formulas differing only in a multiplier (cos
n¢ becomes sin ngd). In psssing, we note that the idea used here of
reducing a three-dimensional contact problem to one possessing cyclic
symmetry is taken from the thesis by V.I. Mossakovskii (Moscow,
Institute of Mechanics, Soviet Academy of Sciences, 1953).
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Here
Pa*(8) = hpy (RE), gn*(8) = 8;7'gn (AE) (0.7

Ko(,8) =\ G (s)Jn(zs)J (&) ds (5.8)

We give below an approximate method of solving Equation (5.6) based
on the following approximation of its kernel

Ko (z, &) =~ k™ (x, §) — (zE)* Ha(x, §) = K* (2, §) (5.9)
where
k™ (2, E) = S 9T () Tu (Es) ds (5.10)

n {4y '—k2|=04k+ﬂk!(k+n)l k ) (N=1,2,..) )
A
9= (v —G@emds, C9=Cn  @m=012.) (612

0

Approximation (5.9) is derived from the same considerations as (1.15).
The numbers N and A have their former meaning, and the function M{")(x,f)
is determined from Fromula (1.14).

In order to find a solution to Equation (5.6) with the kernel K%(x,{),
we first solve the integral equation (2.5) with kernel (5.10). To do so,
bearing in mind the result used above, taken from [12], it is sufficient
to solve the equation

D Xy §R

K (2, 8B (B)dE =1 (<o) (5.13)

and then apply Formulas (4.1) and (4.2).

The solution of Equation (5.13) can be found in the following way. We
write the kernel of Equation (5.13), given by Formula (5.10), as follows

k™ (2, 8) = Ek, (2 /), k(y) = S In (8) Ju(sy)s’ds  (5.14)
0
We then make the substitutions
r=aet, E=oae, al e lga(ae) = xx(f)

and multiply both sides of Equation (5.13) by a”¢™*. We can then
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transform the latter to the following Wiener-Hopf integral equation of
the first kind:

S It—t)p()dr=e=, ImL>0 (@) =eE) (5.15)

0
After constructing the function ng(t) by a method described in detail

in [7) and illustrated by an example of an equation analogous to (5.15),
we find that

g (x) = 21T (1 + ) T2 (p+ .-;:‘-) -1 (p) zn [a,"" (a2 — 22— 4

+n {gmnip — oty | (p=2E0) (5.16)

x

After substituting (5.16) in Formulas (4.1) and (4.2) and carrying out
the necessary computations, we obtain a solution to Equation (1.6) with
kernel (5.10) in the following form

0 (2) = ?;—;:;n[ @ (o) L § @' (u) du ] (P‘ =_1_—§2;y__) (517)

(az__xz)t—p (uz - zz)r——p
Here,
1
ony @ s (s0)
(D(a) = o ;‘“’ '&—a’a’”‘m" Smds (5.18)

?
Formulas (5.17) and (5.18) can be written in the symbolic form

p=Lf (5.19)

Here L is an operator which transforms the function f into a solution
of the integral equation.

6. In order to solve the fundamental equations (5.6), we make use of
Carleman’s method, which in this particular case can be described as
follows. Substitute in (5.6), not the kernel, but its expression (5.9)
in the form of the sum of two functions, and then take the second of them
over to the right-hand side. As a result we obtain an equation which has
a solution in the form of Formula (5.19), but with a right-hand side
given by

f(z)=gn () + S (z8)* Ha (z, ) pn’ (E) dE (6.1)

o

If we now expand (5.11) into a Maclaurin series in £, we find that
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N
Ha(z,8) = 3 b7 (z) ™" (6.2)
m=0
Here
N (_1 )ké—h —ﬂC}r\_l')-nIZ (k—m)

(n) =
hn@%—;}m+m”m+k_mﬂw—mwm

We introduce the further notation

a

Yo = \ e ) de (m =0, 1,...,N) (6.3)

0
Taking into account (6.2) and (6.3), we can replace (6.1) by

N

f@) =20 N KD @) YR + ga(2) (6.4)

m=0

If we now apply the operator L to the function (6.4), we obtain*
pr (x) = Lf (6.5)

The numbers Yi"), which according to (6.4) occur on the right-hand
side of (6.5), can be found, for example, in the following way. Multiply
both sides of Expression (6.5) by x2!* P+ 1 and, taking into account
(6.3) and Formulas (5.17), (5.18) which determine the operator L, inte-
grate with respect to x over the interval (0, a). As a result we obtain
the following set of equations for determining Yg"):

m _ 2+ at4nte) Xy
T = o Gnes L P ) 2 AnYm g ]
=0, 1,...,N) (6.6)

Here
I + n + " (—i)k4_kc'£:2ﬂd2(k—'n)

N
(n + m)t ml kz (+n+k—m-+p) k—m) (W)nyxim 6.7

AR =

* If we take into account definition (6.3), it is not difficult to show
that Expression (6.5) is a Fredholm equation of the second kind with
a degenerate kernel. When the values of Yﬁ") have been found by some
method or other, the above relation constitutes a formula for finding
the functions p"‘(n =0, 1, 2, ...), in terms of which the required
contact stress can be expressed.
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g =2{ O @ttt de,  @a=zG+ 1)+ EHr—1)
0

(zo=1

Here ®,* denotes a function obtained from Formula (5.18) by replacing

f by g,*.

Let us consider the more detailed case when an elastic foundation is
indented by a stamp with a flat base under the action of an eccentrically

applied force P (the eccentricity being denoted by e).

In this case Expansion (5.2) consists of two terms, where g,(r) = z,
gy(r) =Br, and z, has its former meaning, and B is the angle of inclina-
tion of the stamp after deformation (compare [13,6]). The contact stress

now has the form

P(ri@)=po(r) +pu(r)cose
In the present case, according to (5.7)

gn (Z) = TnZ™ (n =0,1), To = zeb17%, 71 = Bho,
Taking this into account, and introducing the new unknowns
XM= WY (=09
(6.4) is replaced by
N
1@ =1 [ 1+ 4m (@' 3 b () X3 |

m=>0
Substituting this expression in (5.18), we obtain

N
@ (o) = o (W2 An(@), An(@)=1+ 3} XDER (v =0,1)
m=o0

Here
N—m
i S g Vi VTR

En = agmial 2 Tigr
nFmim o A1 Wy

We introduce the polynomial

™

) _ 1 m! BN (1 M ok
Pm’ () = 5 W Eo""*"" ¥

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)
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We can then write

H 2j—14 . (
(o a =@ = e (p= V) (8.45)

Applying the operator L to the function (6.11) and taking into account
Formula (5.17), we find that

1~—v,

. Tn - (n) (")
(@) = mgg, @ {1+ E X [En” —

m=0
_ymrem NP iel) ¥ g, () a)
(n + m)l m! L A=) Wy (o — 247

]} =01 @16

The set of equations

2—2m—v N n n
X0 = e [+ 3 XR AR @t g=0,1,.., §) (647)
m=0

for determining the numbers Xg") can be obtained from (6.6) on the basis
of (6.10) and (6.9).

If we are given the eccentricity e and the magnitude of the force P,
then z, and B can be found from the conditions of equilibrium of the
stamp (compare [13])

e"—S

In order to check the validity of the second equality we make use of
(6.8) and (5.7). From Relations (6.18), and taking into account (6.3),
(6.10) and (6.9), we find that

_ PB: 1 . Pele-p. _ e
%= "3mk X, B= 4mh?X D (B———) (6.19)

. (6.18)
p(r, @) cosn griidedr = 2mien { prt @ atnds (w=0, 1)
(]

em'{

It is of interest to derive a formula for the maximum eccentricity
possible without separation of the stamp from the foundation. In
th1s case, following Abramov [13], we obtain

Emax = K "emax = 2A0 (o) X' (A (@) X7 (6.20)

It will be noted from the above calculations that it is simpler to
solve the set of equations (6.17) by the method of successive approxima-
tions. Convergence is particularly rapid for n = 1 (three or four
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approximations are sufficient to obtain an answer to the accuracy of
four places). If n = 0 the convergence is less rapid.

However, there is no need to solve (6.17) when n = 0 and v = 0, since
the numbers Xi") are related in a sufficiently straightforward manner
with the solution of a simpler set of equations, namely (3.1) with f,;=1,
l=0, f; =0, 1>0, i.e. with the numbers X, occurring in Expression
(3.7) for the function x, (t), which is related to p,*(x) by the expres-
sion

Po (Z) = Tox e (z/ @) (6.21)

After substituting (6.21) into (6.3) and taking into account (3.7),
(3.3) and (6.10), we obtain

N
XQ = glttmyl () P X b (6.22)

k=0

The values of bih) are given by Formula (3.3).

TABLE 2.
a 0.5 0.75 1.0
N i I 2 | 3 1 l 2 | 3 { | 2 ‘ 3
10. X 0.137 0.137'0.137 0.483 ‘0.490‘0.489 1.46 | 1.29 | 1.24
emax 0.161 |0.162}0.16210.223 10.237]0.233] 0.254] 0.330 | 0.288

Table 2 shows some results obtained by using the above formulas. It
gives values for three approximations N= 1, 2, 3, of the quantity Xél).
the inverse of which, according to (6.19), determines the angle of incli-
nation of the stamp to the accuracy of a multiplier. This table also
gives values of € max calculated from Formula (6.20). The calculations
were carried out for a foundation in the form of an elastic layer (v = 0)
using the values of C, given by (a) in the footnote on page 210. It will
be seen from Table 2 that in this case, as well as in the axisymmetric
problem, 1f a <0.5 we need not go beyond a first approximation.

In conclusion, we should point out that the method described above
can be applied to the contact problem for a thin circular plate on a
foundation of any sort.
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